Parallels between Gluconeogenesis and Synchronous Machines

نویسنده

  • Monendra Grover
چکیده

Biological diversity particularly at molecular level is astounding and can be used for rational manipulation of biological organisms. To analyze molecular diversity in its full scope computational models of biological organisms and biochemical pathways are indispensable. Engineering Sciences can be of great help in construction of these models. The central feature of modern engineering has been system level design. The differences between biological systems and engineering systems are notable, particularly at the molecular and device level. However, convergent evolution is thought to yield remarkable similarities at higher levels of organization. Here we compare an electrical engineering system with a biological system. We take the example of synchronous machines and gluconeogenesis. A biochemical system like gluconeogenesis is not just an assembly of enzymes. In addition to the list which catalogs the individual components, it is essential to understand how individual components dynamically interact during such operation. In such an attempt the concept of computational complexity is applied to both gluconeogenesis and synchronous machines The Church-Turing hypothesis is used as the basis to construct models of gluconeogenesis and synchronous machines . It is shown that both synchronous machines and gluconeogenesis accept context sensitive languages and models of computation of both the systems are universal. Thus we conclude that for construction of computational models of biochemical diversity in biological organisms, engineering systems can provide important clues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online State Space Model Parameter Estimation in Synchronous Machines

The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...

متن کامل

The Vector Control of Three-Phase Salient Pole Synchronous Machines Supplied by Pulse-Width- Modulated Voltage Source Inverters

In this paper, computer simulation of a three-phase synchronous motor drive is described. This drive/system is supplied with a new type of pulse-width modulated voltage source inverter (PWM VSI) whose amplitude of the first harmonic, compared to a conventional sinusoidal PWM VSI, is increased by about 17% and whose amplitude of higher harmonics is also reduced inversely proportional to their or...

متن کامل

The Vector Control of Three-Phase Salient Pole Synchronous Machines Supplied by Pulse-Width- Modulated Voltage Source Inverters

In this paper, computer simulation of a three-phase synchronous motor drive is described. This drive/system is supplied with a new type of pulse-width modulated voltage source inverter (PWM VSI) whose amplitude of the first harmonic, compared to a conventional sinusoidal PWM VSI, is increased by about 17% and whose amplitude of higher harmonics is also reduced inversely proportional to their or...

متن کامل

Inner Permanent Magnet Synchronous Machine Optimization for HEV Traction Drive Application in Order to Achieve Maximum Torque per Ampere

Recently, Inner permanent magnet (IPM) synchronous machines have been introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction applications due to their unique merits. In order to achieve maximum torque per ampere (MTPA), optimization of the motor geometry parameters is necessary. This paper Presents a design method to achieve minimum volume, MTPA and minimum ...

متن کامل

A short overview of the electrical machines control based on Flatness-technique

Optimal linear controllers and high computational non-linear controllers are normally applied to control the nonlinear systems. Flatness control method is a control technique for linear systems as well as nonlinear systems by static and dynamic feedback namely as endogenous dynamic feedback. This method takes into account the non-linear behavior of the process while preventing complicated compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011